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Abstract. We present experimental and theoretical results for the broadening of the 0.5 eV
charge carrier plasmon in A3C60 (A = K, Rb) compounds. The experimental width (0.5 eV) is
very large and comparable to the plasmon energy. We have performed RPA calculations for a
three-band model of orientationally disordered C60 molecules. We show that it is unlikely that
the width can be caused by the disorder or by a decay in single electron–hole pair excitations.
Instead we have studied the decay in an electron–hole pair dressed by phonon excitations. We
have calculated the response function, using Green’s functions dressed by the self-energy due to
the electron–phonon interaction. Vertex corrections are included to satisfy the Ward identity. We
show that this leads to a width of the plasmon which is comparable to its energy, in agreement
with experiment.

1. Introduction

The doped C60 compounds, K3C60 and Rb3C60 have a plasmon with an energy of about
0.5 eV [1]. This corresponds to a collective oscillation of the electrons in the partly filled
t1u band donated by the alkali atoms, for which the remaining 240 electrons essentially only
contribute a background dielectric function. Here we present measurements for single-phase
K3C60, showing that the width of the plasmon is about 0.5 eV, comparable to the energy of
the plasmon. The origin of this width is unclear. Normally, a large width is due to the decay
of the plasmon in electron–hole pairs. Band structure calculations, however, find the width
of the t1u band to be about12 eV [2]. Even if this may allow for some decay of the plasmon
into electron–hole pairs, one would then expect a strongly non-symmetric line shape, since
there are few or no electron–hole pairs available at the upper flank of the plasmon at energies
of the order 0.5+0.5/2 = 0.75 eV, unless band structure calculations greatly underestimate
the width of the band. In that case it would, however, be hard to understand why the band
structure calculations give a reasonable density of states [3]. In free-electron-like metals,
disorder can cause a broadening of the plasmon at small values ofq, since the plasmon can
decay in electron–hole pairs of the appropriate energy, which in the absence of disorder
would have had too large momenta. Although doped C60 compounds have orientational
disorder, with each molecule taking one of two possible orientations essentially randomly
[4], this broadening mechanism is not possible if the estimates of the band width are roughly
correct, since there are then not enough electron–hole pairs available at any momentum.
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It therefore seems likely that the width of the plasmon is caused by a mechanism
other than a simple decay into one electron–hole pair. The disorder could influence the
apparent width in a different way. In the system without disorder, the plasmon may have
a dispersion as a function of the momentum transferq. As the disorder is introduced,
momentum conservation is violated and plasmons with differentq vectors may couple.
This could possibly show up as a large broadening of an apparently dispersionless plasmon.
To test this we have performed an RPA calculation for a system with disorder, including the
three t1u levels for each C60 molecule. These calculations give much too small a broadening
to explain the experimental width. The strong Coulomb interaction in C60 could cause the
decay in multiple electron–hole pairs. It could also cause the decay into more complicated
states, where the Coulomb energy is larger in the final state, which would take up some
of the plasmon energy. While mechanisms of this type may play a role for the plasmon
broadening, we have here studied a different mechanism.

The C60 compounds are known to have a strong electron–phonon interaction [5]. The
plasmon could therefore decay into an electron–hole pair under the emission of one or
several phonon(s). Some of the plasmon energy would then be taken up by the phonon(s).
We find that the electron–phonon interaction indeed leads to a large broadening of the
plasmon. Due to the finite band width, the electronic states at the bottom and at the top of
the band are pushed out of the band by the electron–phonon interaction, thereby increasing
the quasiparticle band width substantially. This seems to be the most important effect of
the electron–phonon interaction.

In this paper we study a one-band, tight-binding model with a coupling to an Einstein
phonon on each molecule, describing the intramolecular phonons. To describe the plasmon
we have to calculate the dielectric function as a function ofq and ω, since the plasmon
shows up as a peak in−Im ε−1, and the width of this peak gives the broadening.

The polarizability is expressed in terms of the electron Green’s function, dressed by
the self-energy due to the electron–phonon interaction. To satisfy the Ward identity [6],
resulting from charge and current conservation, it is important to add vertex corrections in a
consistent way. We have included mixed ladder diagrams, where the rungs are electron and
phonon lines, with the phonon lines being dressed phonon Green’s functions. The vertex
corrections have earlier been treated by Holstein [7], who studied these corrections in the
context of the resistivity and the phonon drag effect. Holstein considered the case when
the Fermi energy is much larger than the frequencies of the phonons and the external field.
Here we consider the response function for the case when the Fermi energy, the phonon
energy and the frequency of the external field are comparable, which leads to qualitatively
new features.

In section 2 we present the RPA calculations for a three-band model of the disordered
system. In section 3 we describe the formalism for including the electron–phonon
interaction, and in section 4 the model and the details of the calculation. In section 5
we present experimental results and results for the dielectric function and the plasmon
broadening with the electron–phonon coupling included.

2. Disordered system

We first consider a disordered system, to see if disorder can explain the broadening of the
plasmons.

We consider a large supercell ofN disordered C60 molecules. A certain tendency
to an ‘anti-ferromagnetic’ ordering of the molecules, with neighbouring molecules
having the different orientation, has been predicted theoretically [8, 9], and observed
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experimentally [10]. Here we neglect this tendency to local correlation and consider
molecules which randomly take one of the two preferred orientations [4]. For each
molecule we include the three t1u orbitals. The remaining C60 molecular orbitals contribute a
background dielectric function, which only modifies the plasmon energy and dispersion [11].
Within this model the plasmon has a substantial negative dispersion for the ordered system
[11], and we are able to test the effects of coupling plasmons which have different energies
for different values ofq. We thus consider the one-particle Hamiltonian

H =
∑

i

3∑
L=1

∑
σ

ε0niLσ

+
∑

iLjL
′
σ

[
t (iL, jL

′
)ψ†

iLσ ψjL
′
σ + HC

]
(1)

where i labels the molecules andL labels the three t1u orbitals. The hopping integrals
t (iL, jL

′
) are chosen to take the orientational disorder into account, i.e., they depend on

the orientations of the molecules involved [9]. The supercell is periodically repeated. The
Coulomb integrals between the t1u orbitals are calculated by using a representation of the t1u

orbitals in terms of ‘radial’ 2p orbitals located on the carbon atoms in a C60 molecule and
pointing radially out from the the centre of the molecule [8]. Based on atomic calculations,
we put the Coulomb interaction between two electrons on the same atom equal to 12 eV [12].
The Coulomb interaction between two electrons on different atoms is assumed to bee2/r,
wherer is the separation between the two atoms. All other Coulomb integrals, involving
orbitals on three or four different atoms, are neglected [12].

In the RPA, the irreducible polarizability for the frequencyω is given by

P0(r, r
′
, ω)

= 2
∑

knk′
n

′

ψkn(r)ψ∗
kn(r

′
)ψ∗

k′
n

′ (r)ψk′
n

′ (r
′
)

ε(kn) − ε(k′
n

′
) − ω

(2)

× [
f (kn) − f (k

′
n

′
)
]

whereψkn(r) is the wavefunction for a statekn with the energyε(kn). Herek refers to a
wavevector in the small Brillouin zone corresponding to the supercell andn runs over 3N
states.f (kn) is the Fermi function and a factor two comes from summation over spin. The
statesψkn(r) are expressed as

ψkn(r) = 1√
M

∑
iLα

eik·Rα ciL(k)φL(r − Ri − Rα) (3)

whereRi gives the positions of the C60 molecules in the supercell andRα the positions of
theM supercells, andφL(r) describes the three t1u orbitals. We use products of t1u orbitals
as basis states for the polarizability

8qiLL
′ (r) ≡ 8qν(r) (4)

= 1√
M

∑
α

eiq·RαφL(r − Ri − Rα)φL
′ (r − Ri − Rα)

where we have usedν ≡ iLL
′
as a combined index and we assume that the overlap between

t1u orbitals on different molecules can be neglected. We then obtain

P0(r, r
′
, ω) =

∑
q

∑
iLL

′

∑
jL1L2

8∗
qiLL

′ (r)

× P̃0(iLL
′
, jL1L2, q, ω)8qjL1L2(r) (5)
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where

P̃0(iLL
′
, jL1L2, q, ω) =

2
∑
knn

′

ckiL(n)c∗
iL

′ (k + qn
′
)c∗

jL1
(kn)cjL2(k + qn

′
)

ε(kn) − ε(k + qn
′
) − ω

(6)

× [f (kn) − f (k + qn
′
)].

To avoid linear dependencies we introduce the restrictionL 6 L
′

in 8qiLL
′ (r). In this way

we have expressed the irreducible polarizability in terms of matrices with the dimension
6N , whereN is the number of molecules in the cluster. In the limit when the supercell
becomes very large, the dependence ofε(kn) onk becomes very weak. Here we neglect this
dependence and replace the sum overk by the results fork = 0. It is, however, essential to
calculate the coefficientsciLL

′ (k + q) for the proper value ofq to obtain appropriate phase
factors in the polarizability.

We now consider the screening of an external potential

V ext (r, t) = V ext (r, ω)e−iωt

= V ext (q, ω)e−iωteiq·r/
√

M� (7)

where� is the volume of the unit cell andM is the number of unit cells. The screened
potential,V scr (r, ω), satisfies the equation

V scr (r, ω) = V ext (r, ω)/ε0 +

+
∫

d3r
′
∫

d3r
′′ v(r − r

′
)

ε0
P 0(r

′
, r

′′
, ω)V scr (r

′′
, ω) (8)

wherev(r−r
′
) is the unscreened Coulomb interaction andε0 is the dielectric function due to

the interband transitions not included explicitly in the model. This equation describes how
the screened potential induces a charge densityP 0V scr and an induced potentialvP 0V scr .
To solve forV scr , we introduce

Ṽ scr

iLL
′ (q, ω) =

∫
d3r8qiLL

′ (r)V scr (r, ω) (9)

together with a similar definition for̃V ext . We then find

Ṽ scr
ν (q, ω) = Ṽ ext

ν (q, ω)/ε

+
∑
µ,ν

′

ṽνµ(q)

ε
P̃ 0

µν
′ (iq, ω)Ṽ scr

ν
′ (q, ω) (10)

where ṽν,µ(q) is a matrix element between two functions8qν and 8∗
qµ of the Coulomb

interaction. We then find the dielectric matrix

ε̃−1
νµ (q, ω) = Ṽ scr

ν

Ṽ ext
µ

= [(ε0 − ṽP̃ 0)−1]νµ. (11)

Inelastic electron scattering measures a quantity which is related to

Im ε−1(q, ω) =
∑
iLL

′

∑
jL1L2

eiq·(Ri−Rj )〈L|eiq·r|L′ 〉

× [(ε − ṽP̃ 0)−1]iLL
′
,jL1L2

〈L1|e−iq·r|L2〉 (12)

where〈L|eiq·r|L′ 〉 is a matrix element of eiq·r between two t1u orbitals.
We have performed calculations for a model with 32 molecules in the supercell.

As discussed elsewhere [11], if the interband transitions are allowed to contribute the



Plasmon damping and response function in C60 compounds 4005

(a)

(b)

Figure 1. −Im ε−1(q, ω) for q = (0.25, 0.0, 0.0) Å−1 (a) andq = (0.45, 0.0, 0.0) Å−1 (b) as
a function ofω. A broadening with the full-width half-maximum 0.04 eV has been introduced.
The full line shows the result for a disordered cluster and the dashed line for an ordered cluster.

experimentally observed dielectric constant, the calculated t1u band width has to be
multiplied by about a factor 0.6 to give the observed plasmon energy. This large reduction
may be due to the RPA approximation and may suggest that many-body effects are important,
or it could be due to the model not being sufficiently realistic. Here we first use this band
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width but neglect the dielectric function from the interband transitions (ε = 1). For the
ordered infinite system, the plasmon energy is then 1.06 eV forq = 0 and about 0.6 eV at
the Brillouin zone boundaries [11], which for the (100) direction occurs for|q| = 0.44 Å−1.

In figure 1(a) we show results forq = 2π/a(0.25, 0.0, 0.0) for both an ordered and a
disordered cluster. For the ordered cluster the plasmon is narrow and the width is due to the
artificial broadening (0.04 eV) introduced in the calculation. The introduction of disorder
leads to additional structures, and a tail towards lower energies. The width (∼ 0.1 eV) is,
however, much smaller than what is seen experimentally (0.5 eV). In figure 1(b) we show
results forq = (0.45, 0, 0) Å−1. For thisq vector there is little extra broadening due to the
disorder, although there is a weak tail towards higher energies.

Figure 2. −Im ε−1(q, ω) for q = (0.25, 0.0, 0.0) in the RPA for a disordered cluster with a
large t1u bandwidth (0.8 eV) and a large dielectric functionε = 25 due to interband transitions.

For the disordered system, the plasmon energy is generally slightly larger than for
the ordered system. For a polycrystalline solid an average over different directions is
measured. This leads to an extra broadening if the plasmon energy has a strong dependence
on the direction ofq relative to the crystal axes. If, however, the plasmon energy is rather
independent of the direction ofq in the infinite, ordered solid, as is found for the present
model [11] and in most other solids, then the calculations suggest that this also remains
true for the disordered solid, and the averaging over different directions should not cause a
large broadening, in particular for small values ofq.

We have also considered if the width could be explained by assuming that the true band
width is much larger than that found in band structure calculations, so that a decay in single
electron–hole pair excitations would be possible. Thus we have artificially increased the
t1u band width to 0.8 eV. We considerq = (0.25, 0.0, 0.0) Å−1. To obtain roughly the
experimental plasmon energy, we then had to introduce a background dielectric function
ε = 25, supposedly describing the effect of interband transitions. We note that the
experimental dielectric function is about 4 forq = 0 [13], and it is further reduced by
about a factor 1.4 to about 2.8 at theq considered [11]. The results are shown in figure 2.
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The spectrum shows an asymmetric broadening of about 0.2 eV. Although this broadening
is appreciable, it is still substantially smaller than the experimental width. We also note that
these results were obtained assuming a larger band width than what is found in band structure
calculations and that to obtain the correct plasmon energy we had to use a dielectric function
that is probably almost a factor ten too large, although the too-large dielectric function may
partly be a problem of the RPA or the model. These considerations therefore make it
unlikely that a decay in single electron–hole pairs could explain the width of the plasmon.

Figure 3. The diagrammatic representation of the irreducible polarization and of the electron
and phonon self-energies used here. The electron and phonon Green’s functions are represented
by solid and curly lines, respectively.The triangle gives the vertex function0G.

Figure 4. The vertex functions0G and 0D . The solid and curly lines show the electron
and phonon Green’s functions, respectively, and the solid point represents the electron–phonon
interaction.
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3. Response function with electron–phonon interaction

We express the dielectric functionε(q) in terms of the irreducible polarizabilityP(q) as

ε(q) = 1 − v(q)P (q). (13)

where q stands for aq vector and a Matsubara frequencyωm and v(q) is the Fourier
transform of the Coulomb interaction. The polarizability is given by (see figure 3)

P(q) = 2
∑

k

G(k + q)G(k)0G(k, q) (14)

where a factor of two comes from the summation over spin,G(k) is the electron Green’s
function and0G(k, q) is a vertex correction. The sum overq stands for∑

q

≡ T

N

∑
q

∑
ωn

(15)

whereT is the temperature andN is the number of sites in the systems. We here want to
focus on the effects of the electron–phonon interaction, and we do not take the Coulomb
interaction into account in the calculation ofP(q). Thus we express the Green’s function
G as

G(k) = 1

iωm − εk − 6(k)
(16)

where6 is the electron self-energy in the lowest order in the electron–phonon interactiong

6(k) = −g2
∑

q

G(k − q)D(q). (17)

HereD(q) is the phonon Green’s function

D(q)−1 = −ω2
m + w2

0

2ω0
− 5(q) (18)

whereω0 is the phonon frequency and

5(q) = 2g2
∑

k

G(k + q)G(k) (19)

is the phonon self-energy to lowest order in the electron–phonon interaction. The self-
energies6 and5 are calculated self-consistently, using dressed Green’s functions. A factor
of two arises from the summation over spin. These self-energies are shown in figure 3.
We now have to construct a vertex function consistent with the electron Green’s function.
For this purpose we can follow a diagrammatic approach (see figure 4), or following Baym
and Kadanoff [14] we can introduce a vertex function0G = −δG−1/δV , whereV is an
external potential. This introduces a second vertex function0D = −δD−1/δV . This leads
to the following set of equations for the vertex functions

0G(k, q) = 1 − g2
∑
k

′
G(k

′
)G(k

′ + q)D(k − k
′
)0G(k

′
, q)

− g2
∑
k

′
D(k

′
)D(k

′ + q)G(k − k
′
)0D(k

′
, q) (20)

and

0D(k, q) = 2g2
∑
k

′
G(k

′
)G(k

′ + q)G(k
′ − k)0G(k

′
, q)

+ 2g2
∑
k

′
G(k

′
)G(k

′ + q)G(k + k
′ + q)0G(k

′
, q). (21)
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To show that the vertex function0G satisfies the Ward identity [6], we essentially follow
Engelsberg and Schrieffer [15]. We introduce vector vertex functions

0G(k, q) = ∇ε(k)

− g2
∑
k

′
G(k

′
)G(k

′ + q)D(k − k
′
)0G(k

′
, q) (22)

− g2
∑
k

′
D(k

′
)D(k

′ + q)G(k − k
′
)0D(k

′
, q)

and

0D(k, q) = 2g2
∑
k

′
G(k

′
)G(k

′ + q)G(k
′ − k)0G(k

′
, q)

+ 2g2
∑
k

′
G(k

′
)G(k

′ + q)G(k + k
′ + q)0G(k

′
, q). (23)

By insertion, we can then check that in the limit|q| → 0 theansatz

iωm0G(k, q) − q · 0G(k, q) = G−1(k + q) − G−1(k) (24)

leading to

iωm0D(k, q) − q · 0D(k, q) = 0 (25)

satisfies (20)–(23). Since|q| → 0, we obtain the generalized Ward identity

iωm0G(k, q) = G−1(k + q) − G−1(k) (26)

which follows from charge and current conservation [15]. This relation is also satisfied if we
put 0D(k, q) ≡ 0, which leads to a formalism advocated by Engelsberg and Schrieffer [15].

4. Model and details of calculations

We use a one-band model with coupling to local Einstein phonons on each site. These
phonons describe the intramolecularHg phonons in C60, which provide the important
electron–phonon coupling in C60. This model neglects that there are eight fivefold
degenerate Hg phonons and that the partly occupied t1u band is threefold degenerate, since
the purpose of the present calculations is only to study if the phonon mechanism can provide
a broadening of the right order of magnitude. We thus consider the Hamiltonian

H =
∑
kσ

εknkσ + ω0

∑
q

(b†
qbq)

+ g√
N

∑
k,qσ

c
†
k+qck(bq + b

†
−q) (27)

+ v(q)

N

∑
k,k′ q

c
†
k+qc

†
k′ −q

ck′ ck

where εk are the energies of the electrons,ω0 is the energy of the Einstein bosons,g

is the electron–phonon coupling andv(q) = 4πe2/(�εq2) is the Coulomb interaction,
with � being the unit cell volume andε = 4 the dielectric constant due to interband
transitions. The operatorsck and bq are the annihilation operators of the electrons and
phonon, respectively. We use an fcc lattice and describe the electrons in a tight-binding



4010 A I Liechtenstein et al

scheme with a nearest-neighbour hoppingt1. We also included a small second-nearest-
neighbour hoppingt2 (t2/t1 = −0.4) to avoid perfect nesting. The electron–phonon coupling
constantλ, entering in superconductivity, is given by

λ = 2g2N(0)

ω0
≈ 2g2

ω0B
(28)

whereN(0) is the density of states per spin at the Fermi energy andB is the bandwidth.
We useω0 = 0.2 eV, which corresponds to the highest Hg mode andg = 0.2 eV. Using
the band widthB = 0.6 eV, we obtainλ ≈ 0.3, which corresponds to the coupling to
the two highest Hg modes, according to an estimate based on photoemission for a free C−

60
molecule [16].

To perform the calculations we consider a large cluster of 163 = 4096 sites. The
calculations are performed at a finite temperature ofT = 70 K, which is smaller than
the typical energy scales of the problem. The Green’s functions are calculated for 256
Matsubara frequencies, which corresponds to an energy cut off of about 5 eV, i.e., ten
times larger than the largest energy scale of the problem, namely the band width. The fast
Fourier transform technique is used to transform the various quantities between real space
and imaginary times on the one hand and reciprocal space and Matsubara frequencies on
the other hand. In this way time consuming calculations of convolutions and correlations
can be turned into simple multiplications. For instance, in the first sum in (20) we introduce
F(k

′
) = G(k

′
)0G(k

′
, q)G(k

′ + q). The sum can then be written as the simple convolution∑
k

′ F(k
′
)D(k −k

′
), which is performed by transforming all the quantities to real space and

imaginary time, followed by a simple multiplication in this space and a transformation back
to the original space. An iterative procedure was used for solving the integral equations
(20) and (21). A Pad́e approximation is used to analytically continue the results to the
real-frequency axis [17].

5. Results

In figure 5 we show the experimental results for the electron energy loss function as a
function of the energy and momentum transfer for K3C60. The data are normalized to
the intensity of the volume plasmon at about 25 eV. These results were obtained at room
temperature by electron energy-loss spectroscopy (EELS) measurements in transmission
using a 170 keV spectrometer [18]. The energy and momentum resolution were chosen
to be 120 meV and 0.05̊A−1, respectively. Single-phase K3C60 films were grown using
vacuum distillation [19, 20]. The film thickness was about 1500Å. Details of the sample
preparation and characterization are given elsewhere [21]. The raw data have been corrected
for elastic line contributions. The plasmon peak position is independent ofq within the
experimental accuracy, implying a very small dispersion of the plasmon, and the width is
about 0.5 eV, independently ofq and comparable to the plasmon energy. The peak at about
1.3 eV is related to an interband t1u → t1g transition. This transition has also been observed
in other potassium intercalated C60 compounds like K6C60 and K4C60 [22].

In figure 6 we show the electron spectral function for three values ofk. The spectral
function at the L point, which is close to the Fermi energy, shows two structures with
a substantial weight at about the phonon energy above and below the main peak, due to
phonon satellites. In addition there are tails extending further away from the quasiparticle
peak. For the electron at the X point (bottom of the band) spectral weight is pushed outside
the lower edge of the bare band and at the0 point (top of the band) weight is pushed above
the top of the bare band. This leads to a large effective band width.
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Figure 5. The experimental loss function for K3C60 as a function of energy for different values
of the momentum transfer. The dashed line indicates the energy region where the curves have
been extrapolated to zero energy after elastic line subtraction.

To understand the electron spectral function better, we first consider the electron self-
energy calculated using zeroth-order electron and phonon Green’s functions.

6(k, ω) = g2
∑
p

{
1 − f (p)

ω − εp − ω0 + iδ
+ f (p)

ω − εp + ω0 − iδ

}
. (29)

Assuming a band with a constant density of states and widthB, we obtain

6(k, ω) = 1

2

{
ln

ω + B/2 + ω0 − iδ

ω + ω0 − iδ
+ ln

ω − ω0 + iδ

ω − B/2 − ω0 + iδ

}
. (30)

Figure 7 shows the self-energy in (30) forδ = 0.01 eV. The imaginary part is non-zero
for frequencies betweenω0 andω0 +B/2. This corresponds to the scattering of an electron
into a state with the energy between 0 andB/2 and the simultaneous excitation of a phonon.
For small frequencies, the self-energy behaves roughly as6 ∼ −λω, as found for a large
bandwidth [23]. The negative sign leads to a reduced dispersion of the quasiparticles. For
somewhat larger energies of the orderω0 +B/2, however, the real part of the self-energy is
large and positive, due to the finite band-width leading to a zero imaginary part for larger
energies. This is completely different from the caseB/2 � ω0 where the electronic states
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Figure 6. The electron spectral function at the0 point (0,0,0), the X point 2π/a(1, 0, 0) and
the L pointπ/a(1, 1, 1).

Figure 7. The electron self-energy for a system with a constant density of states and using
undressed Green’s functions. The two straight lines showω − εk for εk = 0.09 and 0.35,
respectively. The positions of the crossings with Re6(ω) illustrate how the quasiparticles
corresponding toεk = 0.09 and 0.35 are shifted to lower and higher energies, respectively.

are pushed towards the Fermi energy, while in the present case the quasiparticles close to
the band edges of the bare band tend to be pushed out of the band. This explains the
spectral functions in figure 6 and the large band width. To support these arguments, we
show in figure 8 the calculated self-energy for the0 point, using the zeroth-order electron
and phonon Green’s functions as before but with the real band structure, and in figure 9 we
show the self-energy using the dressed Green’s functions. We can see that figures 8 and
9 are qualitatively similar to figure 7. Similar results for6 were obtained for the X and
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Figure 8. The electron self-energy at the0 point using undressed Green’s functions.

L points. This increase of the quasiparticle band width is important for the damping of the
plasmon.

Figure 10 shows the phonon spectral function. The peak is shifted towards lower
frequencies by almost a factor of two compared with the zeroth-order spectral function,
which is a δ-function at ω0 = 0.2 eV. The reason for this large shift is that the whole
coupling is to one single mode, while in a more realistic model the coupling would be
split up over several, fivefold degenerate Hg modes, and the shift would be correspondingly
smaller. There is a substantial broadening.

Figure 11 shows−Im ε−1(q, ω) with the electron–phonon interaction included. We first
notice that the peak corresponding to the plasmon has a width of the right order of magnitude
(0.4 eV), and that the electron–phonon interaction provides a likely mechanism for the
broadening. It is also interesting that neglect of vertex corrections does not substantially
change the results. We further note that the vertex correction0D is typically a factor of
four smaller than0G.

6. Summary

We have presented electron energy-loss spectra for single-phase K3C60, showing that the
0.5 eV charge carrier plasmon has a large width (∼ 0.5 eV). An RPA calculation for a
supercell with 32 C60 molecules shows that the orientational disorder of the C60 molecules
should not be responsible for this broadening. In particular, the coupling between plasmons
for different values ofq introduced by the disorder is small. We have performed a calculation
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Figure 9. The electron self-energy at the0 point using dressed Green’s functions.

Figure 10. The phonon spectral function for L pointq = π/a(1, 1, 1). A very small broadening
of 0.004 eV (full-width half-maximum) has been introduced.

of the dielectric function including the electron–phonon coupling. The lowest-order electron
and phonon self-energy diagrams were calculated self-consistently. The response function
was then calculated, including vertex corrections which satisfy the Ward identity. It was
found that this leads to a large broadening of the plasmon peak, which is comparable to the
observed experimental broadening. The small width of the bare electron band is important
for the influence of the electron–phonon coupling on the electronic states. While in the broad
band case the electron states are pushed towards the Fermi energy, in the present problem
states close to the bare band edges are pushed away from the Fermi energy, increasing the
width of the quasiparticle band. This width is therefore about twice the plasmon energy,
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Figure 11. −Im ε−1(q, ω) including the electron–phonon coupling withq =
2π/a(0.25, 0.25, 0.25). The full and dashed curves show results with and without vertex cor-
rections, respectively.

and the decay of the plasmons in dressed electron–hole pairs is energetically allowed. We
note that the large electron–electron interaction [24, 25, 26] could also contribute to the
broadening. It would therefore be interesting to calculate the dielectric function in a similar
formalism but with the Coulomb interaction included.
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